Innovative Assistive Technology Solutions

Dipl.-Ing. Gerhard Nussbaum

1

KI-I - Foundation and Background

Objective: Improving the life situation of people with disabilities and older people due to the use of information and communication technology (ICT)

Foundation: 2003

Form of organisation: Non-profit research organisation Location: Johannes Kepler University of Linz Supporting Organisations:

↑ |

Main focus and research areas

Main focus:

- Research and development
- Education and know-how transfer
- Consulting

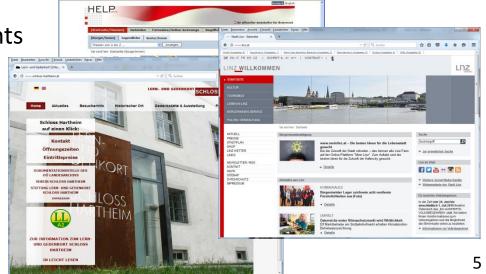
Research areas:

- Technology for People with Disabilities
 - Information and communication technology (ICT)
 - Assistive Technology (AT)
 - Smart Environments and Environmental Control
 - Accessibility and Usability of modern IT (Web- and Software Design, etc.)
 - Design for all
- Translation into Easy-to-Read
- Quality evaluation of social service providers by peer

Activities and Reference Projects

- Research and Development Projects in the Area of ICT for People with Disabilities
 - Regional, national und international
 - AsTeRICS Assistive Technology Rapid Integration and Construction Set
 - Prosperity4All Access to ICT for all
 - 4D-Joystick

- www.asterics.eu
- www.prosperity4all.eu www.ki-i.at/4djoystick



1

Activities and Reference Projects

- Accessible Web-, Software- und Document Design
 - Accessible Web Design (Consulting, Project Support and Evaluation)
 - Federal Chancellery of the Republic of Austria
 - Federal Ministry of Finance
 - Magistrate of Linz
 - Learning and Memorial Site Schloss Hartheim
 - A-Trust GmbH
 - · ...
 - Accessible Documents
 - Government of Upper Austria
 - capito-Network
 - ..

www.help.gv.eu

www.bmf.gv.at

www.linz.at; www.lentos.at

www.schloss-hartheim.at www.handy-signatur.at

MOUTHSTICKS

Introduction

- Persons with severe physical disabilities (limited or no hand control) often use mouth- or headsticks to handle things
 - Typing on computer keyboard
 - Handle a computer mouse
 - Using Smart Phones, Tablets
 - Turning pages of a book
 - Etc.
- Problem: Grabbing of things

Some Mouthstick Application Domains ...

Video

Î

Project RaProErgo

- Rapid Prototyping in the domain of Occupational Therapy
 - Use of high-tech production techniques like 3D-printing
 - Use of high-tech materials like compound-materials (GFK, CFK)
- Methodology: Participatory Design
- Interdisciplinary Team
 - Users
 - Occupational therapists
 - Polymer engineers
 - Computer scientists
 - Orthopaedic technicians
 - 3D-printer developer
 - Ethics and gender studies researcher.
- Main focus on Mouthsticks

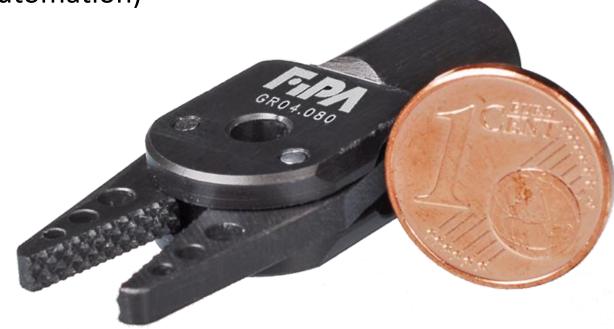
Grabbing of Things - State of the Art

 Hand Orthosis controlled by EEG, EMG, other signals

Hand mounted grippers

 (e.g. pneumatic) controlled by
 special switches: e.g. Gripability

source: [2]


Ŷ

 Low tech solutions mechanically handled (e.g. with tongue): e.g. Pincer Mouthstick

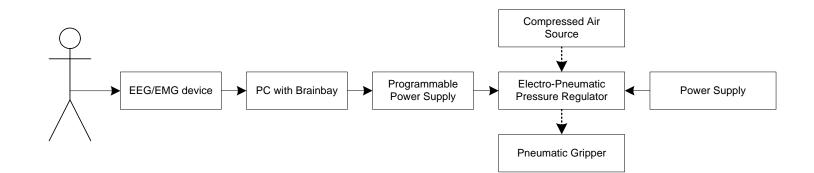
Grabbing of Things – The Solution?

 Small and lightweight (~ 8g) pneumatic grippers are available off-the-shelf (used in industrial production or automation)

• How can be used such grippers for mouthsticks?

The Prototype Gripper-Mouthstick

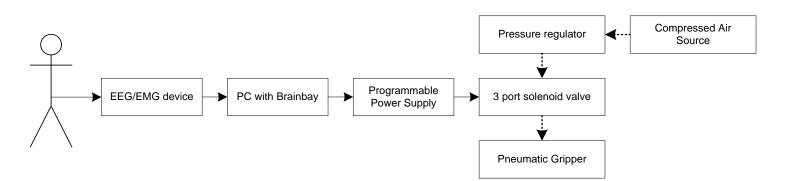
- A carbon fibre mouthstick equipped with the pneumatic gripper FIPA GR04.090
- Weight: 68g


The Prototype Control System

- Compressed Air Source: 1.5 litres 232 bar compressed air cylinder with a cheap 1st stage scuba dive regulator
- Pneumatic devices: Electro-pneumatic pressure regulator, pressure regulator, 3port solenoid valve
- EMG capturing: modified low cost EEG *modularEEG*
- Open source software Brainbay for acquisition and processing of the bio signals
- Programmable power supply Array 3645A for controlling the pneumatic devices

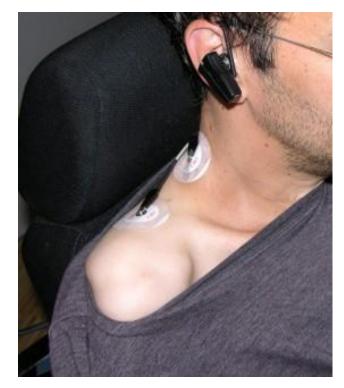
↑

Approach 1

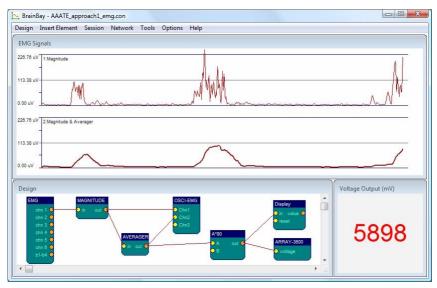

- Control of the gripper proportionally to the EMG signal
 - Input signal for the electro-pneumatic pressure regulator (SMC ITV 2050) is created proportionally to the EMG signal
 - Result: The air pressure and the closing force of the gripper directly correspond to the current muscle tension.

↑ \

Approach 2


- Control of the gripper according to a threshold of the EMG signal
 - If the EMG signal reaches an adjustable threshold, the 3 port solenoid valve (SMC V100) is activated
 - Result: The gripper will close with a force which is independent from the signal and which is predefined by the air pressure (regulated with the regulator SMC AR10)

←


User Test – Test Setting

- The EMG signal was recorded using standard self-adhesive electrodes placed on the skin of the user to record activities of the musculus trapezius.
- Shielded cables were used to connect the electrodes to a *modularEEG* unit.

User Test – Signal Processing

- Raw EMG signal was bandpass filtered from 80Hz to 100 Hz using a Butterworth filter pair of order 4.
- The passband magnitude was calculated and averaged in a time window of 0,25 seconds to reduce jitter and to get a reliable control signal.

Î

Test of Approach 1

- The amplitude of the processed EMG signal was mapped onto a millivolt-scale and transferred to the programmable power supply *Array 3645A* to control the electro-pneumatic pressure regulator.
- Advantage of this approach is full control of the gripper.
- Disadvantages:
 - Main-disadvantage is that the gripper opens slowly with a short delay of approx. 1sec, caused by the control hysteresis of the electro-pneumatic pressure regulator.
 - This approach has a slightly higher pressure air consumption than approach 2

Test of Approach 2

- With the help of an threshold a binary control signal was generated out of the processed EMG signal. By using a state machine element, the alternation from 0V to 24V and vice versa could be triggered by the binary signal.
- Advantage of this approach:
 - The possibility to close the gripper by one short muscle action and to open it with another
 - The gripper opens immediately after the muscle tonus is released
 - Less air consumption than approach 1.

Conclusion

- The experiments done have shown that the control of the pneumatic gripper via EMG signals is feasible and works well.
- → Priming for AsTeRICS ☺

Ŷ

4D-JOYSTICK

Problem/Motivation

- Playing with other children fosters social skills
- Hardly existing accessible off the shelf toys for children
- Adaption of the toys leads to warranty loss

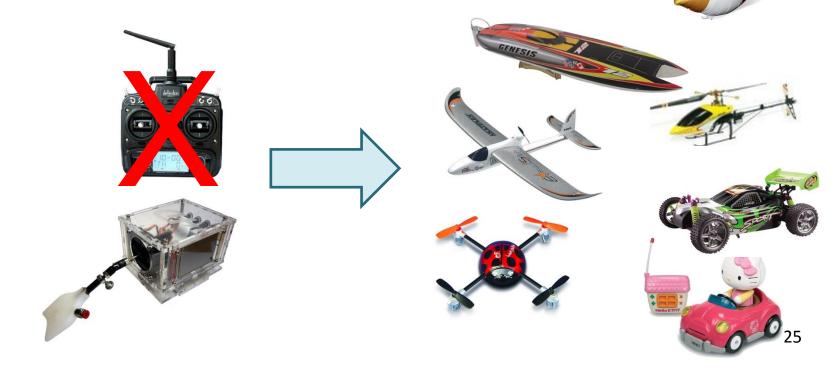
Available Accessible Toys

• Mostly cause and effect toys using a single switch

←

State of the Art

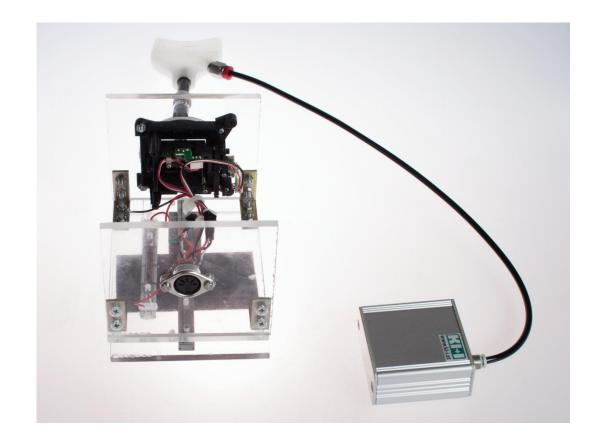
- Cole Galloway adapted small motor driven toy cars with a switch
- Archimedes project Hawaii adapted toys mostly with switches


 BCI controlled quadcopter (Parrot AR.drone) by Karl LaFleur from University Minnesota

←

Why RC-toys

- Existing solutions not accessible
- The original product needs no adaption
- User doesn't loose warranty
- User can buy off the shelf toys



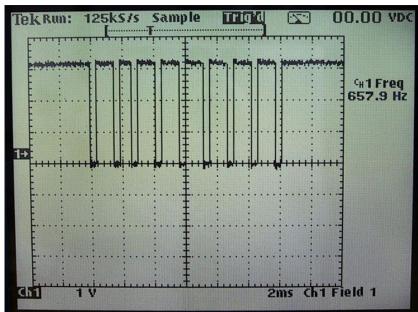
First Approach ...

https://www.youtube.com/watch?v=Tuob5hgLlnc

Î

Feasibility Study – Some Impressions

↑


4D-Joystick: Features of the Prototype

- Full control of all kind of remote controlled models (helicopters, airplanes, multirotors, cars, boats, ...)
- Up to 8 control channels (4 analogue, 4 digital)
- Compatible with PPM transmitters and remote controls via trainer jack
- Storage for 6 model profiles
- Supports dual rates, expo, dead zone, invert
- Configuration via
 PC software or with the touch screen
- Interface to open source software AsTeRICS

↑ I

Transmitter

- μController reads sensor values and generates a corresponding PPM – Signal
- All advanced RC radio transmitters have an input for a slave transmitter (Trainer/DSC jack)

4D-Joystick to RC-Model

Using the Prototype ...

- https://www.youtube.com/watch?v=4ycVIx42yH4
- https://www.youtube.com/watch?v=2gLlylfM6uc
- <u>https://www.youtube.com/watch?v=7BHpfYARd_g</u>
- <u>https://www.youtube.com/watch?v=0Xkw79xoiYg</u>

Conclusion

- 4D Joystick allows fast and very precise input
- User has lots of fun using it ;-)
- Next steps:
 - Experiment with GPS and auto-wheelchair rotation systems
 - Creating a user group with cooperation of a big RC-vendor and local RC-club
 - 4D Joystick as PC-HID input device

A statement of the statement of the

Thanks for Listening!

Contact:

Kompetenznetzwerk KI-I Altenberger Strasse 69 4040 Linz, Austria

Telefone: +43-732 2468 3771 eMail: <u>office@ki-i.at</u> Internet: <u>www.ki-i.at</u>

