

AsTeRICS Workshop – HandsOn Part

Welcome !!

- In this Workshop we will use the AsTeRICS System
- First we make sure that everybody has ARE and ACS installed
- Then we will build some easy models together
- After that you can choose an Assistive Technology project and build it together in small groups

- AsTeRICS can be downloaded from the official site: <u>http://www.asterics.org</u>
- The latest source code is available at GitHub <u>https://github.com/asterics/AsTeRICS</u>
- ACS is the graphical editor, which sends models with connected plugins to the ARE (the runtime environment)
- Documentation is avaliable:
 - User Manual with step-by-step model creation guide
 - Developer manual for creating new plugins
 - Use **F1** in ACS when plugin is selected to display plugin-help !
- Let's start ACS and ARE and have a look !

Some useful plugins – short examples:

- Sensors
 - ComputerVision: FaceTrackerLK
 - Generic: DigitialIn, AnalogIn
 - GUI: ButtonGrid, Slider, Cellboard
 - IntertialMeasurement: Acceleration
 - Simulation: SignalGenerator, Timer
 - Processors
 - Audio&Voice: Speechprocessor
 - BasicMath: MathEvaluator, Threshold, Averager, Constant Dispatcher, Comparator, Differentiate / Integrate
 - DataConverters: IntToString
 - SignalShaping: Deadzone, SignalTranslate
 - Event&StringProcessing: StringDispatcher
 - Microcontroller: Arduino
 - OSKA
 - SignalPathways: PathSelector

- Actuators
 - Audio: WavePlayer, SpeechSyntheziser
 - GenericOutput: DigitalOut
 - GUI: Oscilloscope, BarDisplay, EventVisualizer
 - HomeControl: FS20, IRTrans
 - InputDeviceEmulation: Mouse, Keyboard

* Needs dedicated HW or SW / driver

- In this example we will show how you can control the mouse cursor via head movements
- We use a webcam and the FacetrackerLK sensor plugin (which tracks face movements)
- Mouse clicks are generated via a period of inactivity (no movements)

Note: you find a similar description in the AsteRICS User manual

just another ^{example}

How to provide headtracking-controlled mouse alternatives for computer input

 The x- and y-position of the local mouse will be controlled by the user's head movement

Requirements:

• A webcam

Remarks:

- Camera position directly in front of the user, distance 70-120cm
- No other persons face should be in the field-of-view of the camera

- Create a new model in the ACS (System \rightarrow New Model)
- Insert the "FacetrackerLK" sensor component (Components → Sensors → ComputerVision → FacetrackerLK)
- Insert the "Mouse" actuator (Components → Actuators → Input Device Emulation → Mouse)
- Connect ports "noseX" to "mouseX" and "noseY" to "mouseY"

- Mouse plugin properties:
 - adjust xMax and yMax to the desired values, e.g. screen resolution
 - enter 0 for xMax and yMax to enable automatic detection of screen resolution
 - deselect "absolutePostition" this defines that the X and Y input values are relative changes → fits the output of the Facetracker component

• Mouse plugin, Input Port rider:

 Select "Synchronize Inputs" option in the Input Port Riders for both inputs (mouseX and mouseY)

→ this will wait for both input coordinates to arrive before the mouse position is updated

• You can try out your model by uploading it to the ARE and clicking "Start Model"

Input Ports	-	д
⊿ mouseX		*
Input Port: mouseX		
Search		
Internal Properties		
Port Label	mouseX	
Synchronise Inputs	\mathbf{X}	
Port Alias		
PortDataType	double 💌	
Description	Input port of x-	
MustBeConnected		
▲ mouseY		
Input Port: mouseY		Ξ
Search		
Internal Properties		
Port Label	mouseY	
Synchronise Inputs		
Port Alias		
PortDataType	double 💌	
Description	Input port of y	
MustBeConnected		

- No clicking function implemented yet
- → further development: Add dwell clicking
- Adding processing component "Deadzone" (Components – Processors – Signal Shaping – Deadzone)
- Connect noseX/noseY outputs of the FacetrackerLK to the inX/inY inputs of the Deadzone

- Use the **Deadzone** component to define a desired movement level to start or stop the timing for the dwell click
- Deadzone component fade out x/y signal values in an adjustable range and generate event trigger if the x/y values are in- or outside this range
- Parameter "radius" defines this range
 → here it is the amount of nose movement
- Leave the radius at the default value of 10

Properties (Ctrl-P) 🔹 👎		
Component: Deadzone.1		
Search		
 Internal Properties 		
Component Name	Deadzone.1	
Component Type	asterics.Deadzone	
Component Descriptio	Defines active/passive Z	
Component Class	processor 💌	
 Properties 		
xCenter	0	
yCenter	0	
radius	10	
mode	only inner values 🛛 💌	

- Default value 10 movement range is set to 10 pixels from previous to current position
- Select "Synchronize Inputs" option in the Input Port Riders of the Deadzone plugin for inX and inY

Input Ports	₹ Ţ
⊿ inX	*
Input Port: inX	
Search	
 Internal Properties 	
Port Label	
Synchronise Inputs	
Port Alias	
PortDataType double 🔻	
Description Input port for x value	
MustBeConnected	
▲ inY	=
Input Port: inY	
Search	
 Internal Properties 	
Port Label	
Synchronise Inputs	
Port Alias	
PortDataType double 💌	
Description Input port for y value	
MustBeConnected	
▲ radius	

- How can we measure a certain timespan of low movement (to generate a dwell click) ?
- → Insert a **Timer** sensor component (Sensors Simulation Timer)
 - this component measures time, generates events if a time period has passed, perfoms timing loops
- Set time-period to 1000 in the components properties

- Connect event trigger port of the Deadzone component (purple) to the event listener of the Timer component (green)
- Click on the event channel (connection line is now purple dotted)

→ Events can be selected from dropdown menu

- Select "enterZone" event for the "start" function
- Select "exitZone" event for the "stop" and "reset" function
 - These event connections control the Timer components
 - If nose movements stay below selected level of 10 pixels, the Timer is started
 - Else, the Timer is resetted to 0 and stopped
 - If the movement stays low for the full time period, the timer will generate its "periodFinished" event.

vents (Ctrl-E)	•
Timer.1	Deadzone.1
start	enterZone 🔹
start	•
stop	exitZone 🔻
stop	•
reset	exitZone 🔹
reset	•

• Draw a channel from the Timer's event trigger port (purple) to the event listener port of the Mouse (green)

- By clicking on the new channel (line is now purple dotted), the Events can be adjusted
- Assign the "periodFinished" event to the "leftClick" function

After these settings, the model is usable and provides left-click

Events (Ctrl-E)	▲ Å
Mouse.1	Timer.1
leftClick	periodFinished
leftClick	•
middleClick	v
rightClick	*
doubleClick	*
dragPress	*
dragRelease	•
wheelUp	•
wheelDown	•
center	*
activate	[v]
deactivate	v
toggle	[v]

Include GUI elements for adjustable mouse acceleration and dwell timing as well as different click-actions

- Add a Slider component (Components Sensors Graphical User Interface – Slider)
- Slider properties:
 - range of value can be defined (we can leave it at 0-100)
 - set slider's component name to "Mouse Speed"
 - set minorTickSpacing to "10"

roperties (Ctrl-P) 🗢 I	
Component: Mouse Sp	eed
Search	
 Internal Properties 	
Component Name	Mouse Speed
Component Type	asterics.Slider
Component Descriptio	a slider GUI element which provide
Component Class	sensor 💌
 Properties 	
min	0 😤
max	100 😤
default	50 🗢
autosend	×
caption	Mouse Speed
majorTickSpacing	20
minorTickSpacing	10
alignment	horizontal 🔹
fontSize	14 💽

- To modify the x/y mouse speed with the slider's values, a MathEvaluator processing component is needed (Components - Processors – Basic Math – MathEvaluator)
- First, the x-signal is modified:
 - Delete port connection from noseX to mouseX
 - Draw new port connection from "value" (Slider) to "inA" (MathEvaluator)
 - Draw new connection from noseX (Facetracker) to "inB" (MathEvaluator)
 - Draw a new connection from output port (MathEvaluator) to mouseX input port

- MathEvaluator properties:
 - Adjust "expression" property of the MathEvaluator this defines what will be done with the inputs – in our case we will multiply inA and inB
 - Slider position <50 shall slow down mouse speed, slider positions >50 shall increase mouse speed
 → a/50*b

Properties (Ctrl-P) 🔹 🖡		
Component: MathEvaluator.1		
Search		
 Internal Properties 		
Component Name	MathEvaluator.1	
Component Type	asterics.MathEvaluator	
Component Descriptio	Mathematical expression	
Component Class	processor 💌	
 Properties 		
expression	a/50*b	

- For modifying the y-signal, copy and paste (Ctrl+C & Ctrl+V) the MathEvaluator
- New connections as for the x-direction:
 - Delete port connection from noseY to mouseY
 - Draw new connection from "value" (Slider) to "inA" of the second MathEvaluator
 - Draw new connection from noseY (Facetracker) to "inB" of the second MathEvaluator
 - Draw a new connection from output port of the second MathEvaluator to mouseY input port

Adding different mouse click activities via GUI by

- adding a **ButtonGrid**
 - to select next click type
- informing mouse element about the next desired mouse click
 - by sending an "action string" to the Mouse element

Action strings contain commands which are understood by a number of specialized actuator elements. These string contain the addressed component and the desired command e.g. "@MOUSE:nextclick,right"

- Add the ButtonGrid component (Component Sensors Graphical User Interface – ButtonGrid)
- ButtonGrid properties:
 - Set "buttonCaption" properties of button 1, 2 and 3 to
 - RightClick
 - DoubleClick
 - DragClick
 - Choose "horizontalOrientation" for the ButtonGrid
 - Set a desired caption, e.g. "Next click is a"

caption	Next mouse click is a
horizontalOrientation	X
buttonCaption1	Right Click
buttonCaption2	Double Click
buttonCaption3	Drag Click
buttonCaption4	
buttonCaption5	

- Add the StringDispatcher component (Component – Processors – Event and String Processing – StringDispatcher)
 - Translates incoming events into outgoing strings
 - If buttons are pressed, desired actions strings are generated for the Mouse components
- Connect event trigger port of ButtonGrid (purple) to the event listener port of the StringDispatcher (green)
- Click on the event channel and attach
 - button1 to dispatchSlot1
 - button2 to dispatchSlot2
 - button3 to dispatchSlot3

- Define the strings for slot1-slot3 in the StringDispatcher properties:
 - slot1(button1): "@MOUSE:nextclick,right"
 - slot2(button2): "@MOUSE:nextclick,double"
 - slot3(button3): "@MOUSE:nextclick,drag"
- Connect output port of the StringDispatcher to the "action" input port of the mouse

- Change to GUI Designer tab to define a desired position for the ButtonGrid
 - Possible positions:

\X8813%rine3rional2	(0 Š <mark>– Š – Š</mark>	
	ButtonGrid.1	Fa	acetracke
	ARE Mouse Speed	Control	

• "Upload Model" and "Start Model" to try it out!

Further improvement tip

 If the mouse cursor is jittering a lot, use an averager (Components – Processors – Basic Math – Averager) with a BufferSize of 5 after Facetracker Outputs

Example 2: Using the Arduino for interfacing

- **Special Firmware** supports ARE plugin
- Processors → Microcontroller Interface → Arduino

- Based on Atmel ATmega328
- 6 Analog Input Pins
- 14 Digital I/O Pins
- 32 KB Flash Memory
- 2 KB SRAM
- 1 KB EEPROM
- 16 MHz Clock Speed

Example 2: Using the Arduino for interfacing

• Installation of **COM Port**:

- Attach Arduino to USB Port
- Driver must be updated in Device manager to get COM Port
- Select location of "Arduino.inf" (folder: CIMs/Arduino/driver)
- Click "Install this driver software anyway"
- For Windows 8:

Reboot without Driver Signature:

Enter "shutdown /r /o /f /t 00" in shell-window

Choose: troubleshooting -> advanced options

-> startup settings -> reboot without driver signature enforcement

See: http://www.makeuseof.com/tag/how-can-i-install-hardware-with-unsigned-drivers-in-windows-8/

Example 2: Using the Arduino for interfacing

Breadboard connections

- allow flexible building test circuits
- the bars are connected vertically
- the rails are connected horizontally
- use cables to connect components and Arduino Pins

Example 2: Connecting a LED to Arduino

- Connect the Anode of the Led to Pin7 (positive lead, usually the long leg)
- Connect the Kathode of the Led to a 470 Ohm resistor
- Connect the resistor's other end to GND (0 Volt)

Anode

Kathode

Example 2: Connecting a LED to Arduino

Example 2: Connecting a LED to Arduino

- In the Arduino processor plugin's properties:
 - Define pin7Mode "output, default high" or "output, default low"
 - Use Events Listeners to set output high or low (turn on/off)

 Properties 	
periodicADCUpdate	0
pin2Mode	not used 💌
pin3Mode	not used 💌
pin4Mode	not used 💌
pin5Mode	not used 💌
pin6Mode	not used 💌
pin7Mode	output, default high 🔹
pin8Mode	not used 💌
pin9Mode	not used 💌
pin10Mode	not used 💌
pin11Mode	not used 💌
pin12Mode	not used 💌
pin13Mode	not used 💌

setPin6	*
clearPin6	•
setPin7	button1 🔹
setPin7	•
clearPin7	button2 🔻
clearPin7	•
setPin8	•
clearPin8	•
setPin9	•
clearPin9	•
setPin10	•

Example 2: Connecting a PushButton to Arduino

 Connect one side of switch to GND and the other side to Pin 3

• When switch is pressed: all 4 leads connected !

Example 2: Connecting a PushButton to Arduino

- In the Arduino processor plugin:
 - Select pin3Mode: "input with pullup"
 - Event is triggered when PushButton is pressed (high -> low)
 - Event is triggered when PushButton is relesed (low -> high)

 Properties 	
periodicADCUpdate	0
pin2Mode	not used 💌
pin3Mode	input with pullup
pin4Mode	not used 🔹
pin5Mode	not used 💌
pin6Mode	not used 🔹
pin7Mode	not used 💌
pin8Mode	not used 🔹
pin9Mode	not used 🔹
pin10Mode	not used 💌
pin11Mode	not used 🔹
pin12Mode	not used 🔹
pin13Mode	not used 🔹

eventDisplay	pin3ChangedLowToHigh 🔹
eventDisplay	pin3ChangedHighToLow 🔹
eventDisplay	•
	af

Example 2: Switching a Led with a Pushbutton

- Switch is connected to Pin3 (internal PullUp)
- LED is connected to Pin7
- Switch Open \rightarrow LED on
- Switch Closed → LED off

 Properties 	
periodicADCUpdate	0
pin2Mode	not used 💌
pin3Mode	input with pullup
pin4Mode	not used 💌
pin5Mode	not used 💌
pin6Mode	not used 💌
pin7Mode	output, default high 🔹
pin8Mode	not used 💌
pin9Mode	not used 💌
pin10Mode	not used 💌
pin11Mode	not used 💌
pin12Mode	not used 💌
pin13Mode	not used 💌

Example 2: Switching a Led with a Pushbutton

events (Ctrl-E)	
Arduino.1	Arduino.1
setPin2	[v]
clearPin2	•
setPin3	•
clearPin3	•
setPin4	•
clearPin4	•
setPin5	•
clearPin5	•
setPin6	•
clearPin6	•
setPin7	pin3ChangedLowToHigl 🔻
setPin7	•
clearPin7	pin3ChangedHighToLov 🔻
clearPin7	v
setPin8	· •

Example 2: Reading Analogue Values

- Connect a Potentiomenter
 - Right lead goes to 5 V
 - Middle lead goes to A0
 - Left leads goes to GND
- Voltage at A0 will vary from 0V to 5V when turning

Example 2: Reading Analogue Values

- Arduino Analog-Digital Converter
 - 10 bit \rightarrow 1024 Values
 - Zero Volt = Value 0
 - 5 Volt = value 1023
- Important: Set periodicADCUpdate to a positive Time (in milliseconds) otherwise the ADC is off !!!

 Properties 		
periodicADCUpdate	10 😤	
pin2Mode	not used 💌	
pin3Mode	not used 💌	
pin4Mode	not used 💌	
pin5Mode	not used 💌	
pin6Mode	not used 💌	
pin7Mode	not used 💌	
pin8Mode	not used 💌	
pin9Mode	not used 💌	
pin10Mode	not used 💌	
pin11Mode	not used 💌	
pin12Mode	not used 💌	
pin13Mode	not used 💌	

Example 2: Reading Analogue Values

A voltage divider with a resistive sensor (e.g. LDR – Light dependent resistor) could also be a force sensor, temperature sensor etc.

<u>Try:</u> to print the brightness value in the ARE Window !

- Read a resistive sensor:
 - build a voltage divider!
 - R1 depends on the Sensor

 Try: Switch LED on if Sensor value reaches threshold

Example 2: Control Led with Sensor

Hands-On Projects

- Select a project and solve it in small groups !
- We have some sets of hardware which can be used
- 6 Project topics are available

Project 1: Digitally controlled Mouse

- Realize a fully working mouse with 3 push buttons
 - 2 buttons: left/right or up/down
 pressing both buttons: selection of axis (X or Y)
 - 1 button: mouse click
 short press: left click
 long press: right click

Project 2: Analog-controlled Mouse

- Realize a fully working mouse with 2 push buttons and 1 potentiometer
 - potentiometer: cursor movement with
 2 directions (e.g. +x, -x)
 - 1 button: toggle axis (X or Y)
 - 1 button: mouse click
 short press: left click
 long press: right click

Project 3: Virtual Keyboard

 Realize a keyboard with scanning via the Acceleration Sensor and/or EMG input

- Use OSKA with a keyboard grid for writing
- Use automatic scanning for key selection
- Use EMG sensor for controlling the scanning
 - Minimal muscle movement selects key

Project 4: Environmental Control

- Realize an environmental control system
 - Speech Recognition input
 - FS20 for controlling a 220V light
 - Abotic door opener connected via GPO module

Project 5: Infrared Control

- Control a GhettoBlaster via IR device
 - GUI (Cellboard) with automatic scanning
 - IR Trans for infrared remote control
 - Send commands to HiFi Stereo Radio:
 - On/Off
 - Play / Stop
 - Volume control
 - Next/Previous song

Project 6: Accessible Pong Game

- Realize a Pong Game Interface via desired input sensors
 - Player 1: uses Accelerometer: tilting controls paddle 1
 - Player 2: uses WebCam / FaceTracking: up/down movement of head controls paddle 2

- Connect 3 buttons to your DigitalIn as shown:
- Alternatively, you can use an Arduino and use 3 pushbuttons

- To generate 1 right-click with the Mouse actuator, you can send the string "@MOUSE:nextclick,right" to the action input port
- Use a StringDispatcher processor to send desired strings to other plugins (see HeadMouse example)

Ŧ	Properties (Ctrl-P)	▼ ₽			
*	Component: StringDispatcher.1				
	Search				
	 Internal Properties 				
	Component Class	processor			
	Component Name	StringDispatcher.1			
	Component Type	asterics.StringDispatcher			
	Component Descriptio	Send test from chosen slot			
	 Properties 				
=	delay	300			
	slot1	@MOUSE:nextclick,right			
	slot2				
	slot3				

- Use a **Timer** sensor to detect a long button press
- If the button is held for a desired time (defined in the properties) the timer can send an event
- Attach Events from the DigitalIn to the Timer plugin so that:
 - Pressing the button starts the timer
 - Releasing the button stops (and resets) the timer.

The example shows events from a button connected to DigitalIn 3:

Timer.1.2	DigitalIn.1
start	in3Low
start	
stop	(in3High
stop	[
reset	(in3High
reset	

- Use a ConstantDispatcher processor to create movement:
 - Send negative value (-1) to Mouse actuator x/y for up/left
 - Send positive value (1) to Mouse actuator x/y for right/down

₹	Properties (Ctrl-P)	▲ Å
	Component: ConstantE	Dispatcher.1
	Search	
	 Internal Properties 	
	Component Class	processor 💌
	Component Name	ConstantDispatcher.1
	Component Type	asterics.ConstantDispatcher
	Component Descriptio	Send double values from chosen slot
	 Properties 	
=	number	2
	delay	300 😤
	slot1	1
	slot2	-1
	slot3	0
	slot4	0

 Dispatch up/left or right/down movement via connected pushbuttons (here: DigitalIn Pins)

-	Events (Ctrl-E)	-	• [
	ConstantDispatcher.1	DigitalIn.1	
	dispatchSlot1	[in5Low	•
	dispatchSlot1	[•
	dispatchSlot2	(in6Low	•
	dispatchSlot2	[•
	dispatchSlot3	[in5High	•
	dispatchSlot3	(in6High	•
	dispatchSlot3	[•

Project 1: a possible solution ...

- Different value ranges of mouse movement and Arduino ADC:
 - Mouse: relative, positive and negative values
 - ADC: absolute, only positive values (0-1023, 12bit)
- Solution: SignalTranslation plugin

Component: SignalTran	nslation.1
Search	
 Internal Properties 	
Component Class	processor
Component Name	SignalTranslation.1
Component Type	asterics.SignalTranslation
Component Descriptio	Translates signals from a certain input range to an output range
 Properties 	
inMin	0
inMax	1023
outMin	63
outMax	-64

- It's hard to find the exact centre of the potentiometer
 - > the Cursor is always moving
- We need a window around the centre, where the cursor does not move:
 - > Deadzone plugin

Project 2: a possible solution

- Connect the EMG shield to the Arduino
 - Attach electrodes to forearm
- Use an Arduino plugin to view analog values of AD0
 Select an update rate of 5ms (200Hz) for the Arduino ADC
- Use oscilloscope to view raw singal (try it out !)

- To calculate the EMG force:
 - With a **Differentiate** processor you to get rid of the DC-offsets and slow changes in the EMG signal. (You can also experiment with the Filter Plugin)
 - use a MathEvaluator to get the absolute values of the signal enter abs(a) as expression in the MathEvaluator properties
 - use an Averager to calculate the average of 30 samples
- Use a Threshold processor to create events if the EMG force exceeds a certain level
 - Check reasonable values with oscilloscope or BarDisplay

- Add a "**OSKAInternalScanning**" plugin
 - this launches the OSKA on-screen keyboard in automatic scanning mode
 - Upload model to ARE (to update list of available keyboards)
 - Select an appropriate keyboard grid for writing for example: "keyboards\writing\abc.xml"
 - Select scan speed 4 and highlightStyle "InvertKeys"

 Properties 	
port	4546
title	OSKA keyboard
oskaPath	\oska\start keyboard.exe
keyboardPath	keyboards\writing\abc.xml
scanSpeed	4
highlightStyle	InvertKeys 🔹
settingsFile	settings\internal_tcp.kst
windowDecorated	X
resizeEnabled	

Project 3: a possible solution ...

Requirements:

- Abotic Door Opener
 - <u>http://abotic.com/en/</u>
 - DigitalOut module
 - Plug In Abotic Door Remote to DigitalOut port 1
- Voice recognition
 - Microphone (Check signal level!!)
 - Microsoft Speech Platform Server version 11, the SR language and the TTS language pack must be installed too.
 - <u>http://www.microsoft.com/en-</u> <u>us/download/details.aspx?id=27225</u>
- FS20Sender device
 - <u>http://www.elv.at/fs20-funkschaltsystem.html</u>

🛞 Sound	×	
Wiedergabe	Aufnahme Sounds Kommunikation	
Wählen Sie	ein Aufnahmegerät aus, um die Einstellungen zu ändern:	
Docking Mic Realtek High Definition Audio Standardgerät		
External Mic Realtek High Definition Audio Nicht angeschlossen		
1	Mikrofon Realtek High Definition Audio Bereit	
Konfiguri	eren Als Standard 💌 Eigenschaften	
	OK Abbrechen Übernehmen	

Select the recognition **language**. In the **mode** "always active" the recognition is performed continuously.

command1-commandN: Enter voice commands

Check the signal level of the microphone!

Properties (Ctrl-P)		
Component: SpeechProcessor.1		
Search		
 Internal Properties 		4
Component Name	SpeechProcessor.1	
Component Type	asterics.SpeechProcessor	
Component Descriptio	This plugin allows to genereate	
Component Class	processor 💌	
 Properties 		
language	English	
recognitionConfidence	0.5	
activationCommand	computer, listen!	
deactivationCommand	computer, stop!	
helpCommand	computer, help!	
mode 🤇	always active	
command1	Open door	=
command2	Close door	
command3	Switch on light	
command4	Switch off light	
command5		
command6		
command7		1

- The DigitalOut plugin expects action strings: "set", "clear", "toggle" and "press". The command has to be followed by a comma and the port number, for example:
 - "@DIGITALOUT:set,1" or
 - "@DIGITALOUT:toggle,2".
 - The "press"-command toggles the given output port two times with a delay of 500ms.
- StringDispatcher can be used to construct the string.

- Enter the housecode and address of the target device in the FS20Sender properties.
- Our FS20Receiver Power Switch is already configured to housecode 11111111 and address 1111

- In the event editor of FS20Sender map recognized commands with FS20 actions:
 - off: Switch off device
 - onLevel1-onLevel16: Switch on device to a certain level
 - toggle: Toggles switching (on/off)

Events (Ctrl-E) 🗸 🗸	
FS20Sender.1	SpeechProcessor.1
off	recognizedCommand4 🔹
off	•
onLevel1	•
onLevel2	-
onLevel3	•
onLevel4	•
onLevel5	•
onLevel6	•
onLevel7	•
onLevel8	•
onLevel9	•
onLevel10	•
onLevel11	•
onLevel12	•
onLevel13	•
onLevel14	•
onLevel15	•
onLevel16	recognizedCommand3 🔹
onLevel16	•
onOldLevel	•
toggle	•
dimUp	•

Project 4: a possible solution ...

Requirements:

- Arduino
 - Connect **push button** as shown in Arduino slides, use **internal pullup resistor**
- IRTrans device
 - Install IRTrans driver and SW from <u>http://www.irtrans.de/de/download/windows.php</u>
 - Copy "asterics.rem" remote configuration file to C:\ProgramData\IRTrans\remotes
 - Start IRTransServer.exe
 - Right click on IRTrans symbol in system tray and choose "Startup Parameter"

Startup Parameter IP Assign IRConfig (USB/WiFi) IR Server starten

Über ... Fxit

– Select "USB" and "Save & Restart"

erver Startup Parameter	
IRTrans Devices	
▼ USB LAN COM1 COM2 COM3	COM4
IPe / Additional COM Ports	
Free Device String	
Only Check 1st LAN Device on startup	onnect
Startup Delay 20000 ms RS232 Baudrate	38400 -
Loglevel 0 (Off) Show RCV Timing Show Show Hexdump	w Send Timir w Timestamp
General IRServer options	
XBMC Support 🔽 Start Web Interface 🔽 Start LIRC Inte	face
IRDB/Translat	or via SBUS
RServer Commandline Options	

- Test sending IR codes
 - Right click on IRTrans symbol in system tray
 - Select "Send IR Code"
 - Select "asterics" as remote configuration
 - Select a command
 - Click on "Send"

- The **CellBoard** plugin can be used to make a "button-matrix" with scanning selection.
- scanMode "row-column" highlights rows first, then colums
- Selections are done via the scanSelect event listener.
- Enter caption and/or image for every used button
- Use a Timer plugin to trigger
 scanMove events periodically.

roperties (Ctrl-P)		Ŧ
Component: CellBoard.	1	
Search		
 Internal Properties 		
Component Name	CellBoard.1	
Component Type	asterics.CellBoard	
Component Descriptio	GUI component	
Component Class	sensor 💌	
 Properties 		
caption	Cell Board	
rows	4	
columns	2	
textColor	black 💌	
backgroundColor	darkgray 💌	=
scanColor	red 💌	
scanMode	row-column	
hoverTime	1000 듣	3
cellText1	start	
cellImage1	\OSKA\images\homecontrol\next.png	
actionText1		
cellText2	stop	
cellImage2		
actionText2		
cellText3	previous	
cellImage3		
actionText3		
cellText4	next	
cellImage4		
actionText4		
cellText5	vol up	
cellImage5		
actionText5		
cellTextб	vol down	
cellImage6		
actionText6		
cellText7	on / off	

- Use default hostname and port to connect to the local IRTrans
- prestring selects the remote control configuration to use, note the comma at the end !!
- send1-sendN: Enter the configured / stored IR codes

Properties (Ctrl-P)	🗕 û
Component: IrTrans.1	
Search	
 Internal Properties 	
Component Name	IrTrans.1
Component Type	asterics.IrTrans
Component Descriptio	Infrared Transmission Module, interfaces to the
Component Class	actuator 💌
 Properties 	
hostname	localhost
port	21000
prestring	snd asterics,
send1	rc_play
send2	rc_stop
send3	rc_back
send4	rc_forward
send5	rc_volume_up
send6	rc_volume_down
send7	rc_operate
send8	
send9	

Project 5: a possible solution ...

- Add the **Ponggame** actuator and select the mode "**position**"
 - Input values of 0-300 are accepted for the paddles
 - The output of the used sensors must be adjusted to match this range of 0 300 to control the paddles
 - A "start" event must be connected; this event could be generated via a GUI element (eg. ButtonGrid plugin)
- Add an **Accelerometer** sensor for paddle1
 - Use a SignalTranslation processor
 to map the range of the yAcc output (-8192 8192) to (0 300)

 Properties 	
inMin	-8192
inMax	8192
outMin	0
outMax	300

- Add the FacetrackerLK sensor plugin
 - The output represents head movements (relative changes of postion)
 - Use the nose-Y output port (for up/down movement)
 - Use a MathEvaluator to invert/scale the movement values as desired
- Add an Integration processor to accumulate the relative changes of the head movements
 - This creates an absolute position for the paddle 2 control
 - Set upperLimit and lowerLimit of the Integrator to 300/0

 Properties 		
resetValue	150	
upperLimit	300	
lowerLimit	0	
wrapAround		

Project 6: a possible solution ...

